Tri-reforming of Methane and CO₂: A Novel concept for Catalytic Production of Solid Waste Syngas with Desired H₂/CO Ratios for Liquid Biofuels

12-16-10

John T. Wolan

University of South Florida Department of Chemical & Biomedical Engineering

And

John Kuhn

University of South Florida Department of Chemical & Biomedical Engineering

State University System of Florida **Hinkley Center for Solid and Hazardous Waste Management** University of Florida 4635 NW 53rd Avenue, Suite 205 Gainesville, FL 32653 www.hinkleycenter.org

Report # (leave blank for Center use) QUARTERLY PROGRESS REPORT

October 1 - November 30, 2010

PROJECT TITLE: Tri-reforming of Methane and CO₂: A Novel concept for Catalytic Production of Solid Waste Syngas with Desired H₂/CO Ratios for Liquid Biofuels

PRINCIPAL INVESTIGATOR(S): Dr. John T. Wolan PI Dr. John Kuhn Co-PI Student Researchers: P. Saraneeyavongse & L. Rufo

AFFILIATION: University of South Florida

COMPLETION DATE:9-30-2011

PHONE NUMBER: 813.974.3997

PROJECT WEBSITE ADDRESS (URL): http://wolan.blog.usf.edu/tri-reforming/

Email address: wolan2eng.usf.edu

Work accomplished during this reporting period: Synthesis of Tri-Reforming Catalyst Characterization of Tri-Reforming Catalyst Reaction Engineering

Information Dissemination Activities: Website

TAG members:

T.J. Couch	Vice President	University Commerical Center
Dan McGinnis	Corporate Spokesperson	Waste Management
Kyle Mowitz	President	Imperium Energy
Tonja Brickhouse	Director of Solid Waste	City of Tampa
Tom Snelling	Green Officer	City of Tampa
John Ramil	CEO	TECO
Tim Cesarek	Organic to Gas Director	Waste Management
Mark Talbott	Operations	Republic Services
Rose Ferlita	County Commissioner	Hillsborough County
Mark Sharpe	County Commissioner	Hillsborough County
Barry Boldissar	Director of Solid Waste	Hillsborough County
Paul Vanderploog	Executive Enterprise	Hillsborough County
Matt Yung	Researcher	National Renewable Energy Lab

TAG meetings: November 17, 2010 University of South Florida

Abstract

This research focuses on converting Municipal Solid Waste (MSW) to liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of MSW via a trireforming process which involves a synergetic combination of CO₂ reforming, steam reforming, and partial oxidation of methane. Typical biomass or MSW derived syngas H₂:CO is 1:1. This innovation allows for cost-effective one-step production of syngas in the required H₂:CO of 2:1 for use in the FTS. The USF group has already developed a process that converts this syngas into diesel and jet fuel. This project will focus on the development of an appropriate gasification catalyst to convert MSW to the required syngas composition for production of liquid fuels.

1. Tri Reforming

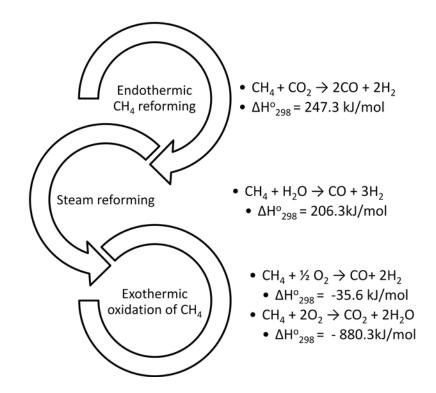


Figure 1. Tri-Reforming

2. Project organization

2.1 Synthesis of Tri-reforming Catalyst

Co-precipitation of precursors provides an industrial scale up opportunity as well as simplicity. Variables that will be observed will be the amount of Nickel Nitrate, Nano-Nicke, amount of Magnesium, and Composition of Cerium and Zirconium Oxide.

Ni:Mg Ratio	Cerium Content
0	0
0	1
0	2
1	0
1	1
1	2
2	0
2	1
2	2

Table1. Catalyst Variables

To make the catalyst 1.1 grams of $ZrO(NO_3)_2 X H_2O$ was placed on a hotplate to evaporate H2O. Then 6.1762 g of Ce(NO₃)₃ 6H₂O was added to the $ZrO(NO_3)_2 X H_2O$ and both dissolved in H2O. The mixture was then mixed with NH4OH to precipitate the catalyst needed, and then vacuum filtrated. The mixture was left in an oven to dry at 120 degrees Celsius overnight. Further tests and results will be included in the following quarter report.

2.2 Reaction Engineering

The preliminary steps in reaction engineering is to conduct benchmark catalyst test, pass MSW syn gas / component mixture over packed bed, and then measure outlet concentrations after reactor using Mass Spectroscopy.

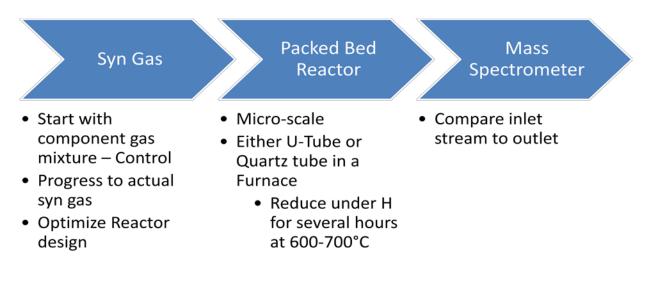


Figure 2. Reaction Engineering

2.2.1 Benchmark Catalyst test

Temperature-programmed reduction (TPR) technique was applied for the characterization of heterogeneous catalysis to find the most efficient reduction conditions. The method used oxidized catalyst precursor and submitted to a programmed temperature rise while a reducing gas mixture of Hydrogen was flowed over it.

The micro reactor was a U-Shaped quartz tube in which approximately 50-100mg of a benchmark catalyst was packed between quartz wool. The flow rate of gas used in the system was 5mL per minute of Hydrogen and 45mL per minute of Helium. The TPR cycle used was to ramp the temperature at 10 degrees Celsius per minute reach the temperature of 850 degrees Celsius. The system was then dwelled at that temperature for 30 minutes. The preliminary results showed comparable results with those found in literature. Further tests and results will be included in the following quarter report.